(x^3+2x^2-7x+4)/(x-1)

Simple and best practice solution for (x^3+2x^2-7x+4)/(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^3+2x^2-7x+4)/(x-1) equation:


D( x )

x-1 = 0

x-1 = 0

x-1 = 0

x-1 = 0 // + 1

x = 1

x in (-oo:1) U (1:+oo)

(x^3+2*x^2-(7*x)+4)/(x-1) = 0

(x^3+2*x^2-7*x+4)/(x-1) = 0

x^3+2*x^2-7*x+4 = 0

x^3+2*x^2-7*x+4 = 0

{ 1, -1, 2, -2, 4, -4 }

1

x = 1

x^3+2*x^2-7*x+4 = 0

1

x-1

x^2+3*x-4

x^3+2*x^2-7*x+4

x-1

x^2-x^3

3*x^2-7*x+4

3*x-3*x^2

4-4*x

4*x-4

0

x^2+3*x-4 = 0

DELTA = 3^2-(-4*1*4)

DELTA = 25

DELTA > 0

x = (25^(1/2)-3)/(1*2) or x = (-25^(1/2)-3)/(1*2)

x = 1 or x = -4

x in { -4, 1, 1}

(x+4)*(x-1)^2 = 0

(x+4)*(x-1) = 0

( x+4 )

x+4 = 0 // - 4

x = -4

( x-1 )

x-1 = 0 // + 1

x = 1

x in { 1}

x = -4

See similar equations:

| -16t^2+48t+7=0 | | 5(x-6)-2[3x-(5x+12)+10]=8(2x-5) | | f(0)=-4x+3 | | (5c+4d)(5c+4d)= | | -2(t-2)+6t=9t-7 | | 8d+3=3d+33 | | 13=2-3x | | (M+3)(2m+5)=0 | | 7c-6=13 | | 1189=ax+by+z | | Y=2.5+3 | | -9-9=-27 | | 9(x-7)=-1.8 | | 6a=11 | | (5x+3)(x+2)=0 | | 2s-5=9 | | 3.3*9.3= | | g(-4)=5x-9 | | 10.6=2x-1 | | 3x-1=12.5 | | 2x+4=3x-s | | N(n+1)=0 | | 5+2(x-2)+3x=2(2x+1) | | p(x)=x^4-8x^3+14x^2-8x+13 | | x^2=7x-5 | | G(0)=5x-9 | | 2x+4=5x-9 | | 4x+5=75 | | -2=2x-6 | | K^2-16k+11=0 | | 4x+13=5x-3 | | (2r^3+r^2+r)/4r^2 |

Equations solver categories